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ABSTRACT

A dispersion relation involving all space-time harmonics has
been obtained for electromagnetic wave propagation in an infinite
dielectric rz%iedium whose permittivity is modulated by a high inten-
sity pump v%/ave containing two harmonics. Brillouin diagrams are
given for the parametric coupling between the n = -1 (difference
frequency) énd n = +1 (sum frequency) space-~timme harmonics of the
electromé.gﬁetic si/gnal wave. The effect of the amplitude and phase
of the second harmonic of the pump wave on the parametric growth
process haé been studied. Both stable and temporally unstable inter-

actions are considered.



Traveling wave parametric interactions of electromagnetic
waves propagating in a dielectric medium with permittivity varying
pei‘iodicall;l in time and space has assumed considerable importance
because of its numerous practical applications. Although many
theoretical }pap"ers [1]-[4] have appeared on this problem, it is as~
sumed for the most part that the perturbing pump wave modulating
the medium is a weak, progressive, sinusoidal disturbance. However,
there are a number of physical situations in which the modulating pump
wave can have a large amplitude and contain two or motre harmonics
of the fundamental pumping frequency. Stimulated Brillouin scattering
processes in Quantum Electronics [5], optical diffraction by non-
linear ultrasonic waves [6] or electromagnetic diffraction by large
amplitude traveling wave disturbances in the ionosphere or in labora -~
tory plasmas [7] are all various manifestations of this phenomena.

The purpose of this report is to study the effect of the amplitude and
phase of the second harmonic component of the pump wave on the para-
metric interactions resulting from electromagnetic wave propagation
in dielectric media of this type.

It is assumed that the pump wave traveling along the z direction
in an infinite, dielectric medium contains two harmonics and causes

the dielectric constant of the medium to vary in the following manner
elz,t) = €5 + €  cos(w t -k z) + ¢, cos(2w t - 2k z + 4) (1)

where éz << €] << €5+ w_and k_are the angular frequency and wave
number of the fundamental component of the pump wave and g is the

phase angle of the second harmonic relative to the fundamental. The

N



pump wave at frequency 21 v °an eifher be the second harmonic of a
high~intensity, non-linear pump wave in which case the phase angle
4=0, or a.nif independent wave generated by a separate source in
which case the phase angle 4 can be retarded by various values. For
the purpose of this report only the phase angiés gf: Oand g =7 are
considered here.

In Equation 1 it is assumed that

€ K< € <K gy - (2)

This ass.umi?tion is true only if the pump wave has a weak second har-
monic comp%ment; in most of the physical situations described earlier
the second harmonic pump component is indeed small and Equation 2
is applicablé [s1-[7].

Let us aésume a TEM type electroma;gnetic; wave moving in the
z directioﬁ and parallel to the pump wave. 'ZFhe wave equation for the

electric field E(z,t) in the medium can be written as:
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o is the perjme;bility of the medium and the displacement D = ¢(z, t)E
where €{z,t) is given by (1). By using Floquet's theorem ir conjunction
with the princii:l‘e of superposition, it can be shown that the electric

I
field can be represented in the following form:

(4)

o Ies) .
o =jlw t-k z) ~in{w_t-k_2z)
E(z,t) = Ege  © Z Ae vV

0
n=-oo
where Wy ancil kl are the angular frequency and wave number of the signal

wave in the unmodulated medium. The phase angle g = 0 will be considered

first and the dispersion relation for the g = T case will be obtained by



making the necessary change in the sign of the second harmonic
modulating coefficient € later in this report. By substituting (4)
in (3) we obtain the following fourth-order, linear, homogeneous

difference-differential equation; when the phase angle ¢ = 0:

€ €
' 1 2
DnAn * 2¢, {An-l 1] * O[An-Z A l=0 (5)
where n = 0, Ty, '.‘:2, ... and
2
2 (ky + nk )
D =|1-c¢c, —— (6)
o (w, + nw )2
L v

€y = 1/\/}15?5 is the velocity of the electromagnetic wave in the unmodu-
lated medium. Eq. (5) represents an infinite set of linear difference
equations in the modal amplitudes An' It will now be shown that solutions
can be obtained in the form of rapidly converging continued fractions.

By adding the (n=1)th and (n+1)th equations given by (5) and sub-

stituting the resulting expression for [An-Z + An+2] in (5) we obtain:

A 4 €1 2 €2
Dn n * Zeo [An-l tA +1] € [Dn-lAn-l + Dn+1_An+1] - _e_(; n
1(%2 1l=2
"2 (?—) (el) [A + An+1] ) (EO) ( 1) [An- A +3]
=0 {(7)

From Eq. (2) it is seen that (Ez/fo) << 1 and (e?_/el) << 1. Hence, the
coefficients of the last two terms in (7) which involve the quadratic
products of (ez/eo) and (ez/el) are much smaller than the coefficients

of the other terms in (7). Therefore, the last two terms in (7) can be



neglected and we obtain a linear, second-order difference-differential

equation with rational coeifficients:

€2

€
'El‘.Dn+1]An+1 =

D, - 2]A_+[yl - 2D _JA | +[L
S VI g [ - 0
n € n Zeo € n-1 -1 Zeo

(8)
The electric field amplitudes can be expressed now in the form of con~

tinued fractions as follows:

€ €
1 2
A - [26 T e Dn-l]
n_ 0 1 (9)
A1 € €§ € € €
Doo| T |zel” —Dn-l-l 2e, —-Dn
€0 €0 €1 0o €1

€
[Pan 2] -
€ >

for n

1

and

€ €
i 2
A h [2(—: - € Dn+1]
n _ 0 1
A T € € € € €, 1 (10)
n+l D - 2 1 ZD 1 2
: " 1Ze. e “n-1 ZensDn
n 0o & o €1

€0
- ,
[D 0 -—-‘3]
n EO |

Equations 9 and 10 apply to the case where ¢f = 0. The electric field

fornSI

amplitudes when the phase angle g = T can be 'obtained by replacing €,
in the equations 5 to 10 by “€,-
A dispersion relation for the nth space~time harmonic in the form

of continued fractions, for the two cases wheh = O and f = 7 is given by



CTe €
[21 t?%Dn+1]
0“1
' € € € € €
clp L r=2| oLt 2p L+ 2
* [Dn+1 - ] [Zeo - €; Dn~l-1] [Ze 3 Dn+2

GO ‘
< ,
p _t2. .
nt2 EO

(11)

The fez in the above equation indicates whether the second harmonic

of the pump wave is in phase (4 = 0) or out of phase (f = m) with the
fundamental component of the pump wave, respectively. The conver-
gence of the continued fractions in (9), (10) and (11) will now be proved.

From (8) and (6) it is seen that the following limit exists:

<
Lt Dn = Lt Dn-l-l = Lt Dn__1 =]11- — | = D {(12)
n-»00 N =300 n-300 v

where V = wv/k", = the phase velociﬁy of the pump wave.

In the asymptotic li_mit n—yoo the coefficients of the difference-
diffgrential equation (8) are constants. Hence, by Laplace's method, it
can be now shown that equation (8) is a Poincaré difference equation [3, 8]

whose characteristic equation is given by:

P+ — +1=0 (13)
[__;__.a]



‘ kBy' applying Poincaré's theorem [3, 8] it can be shown that the finite limits

An+1 A -1
Lt —g—==p and Lt X = P, exist if

n-=»c0 .. n | Nn-3Q n
|
i

€ € €

p-2{s,; -2 . (14)
€1 € €1

When '(ez/gl)i << 1, the above condition indicates the existence of finite

limits except in the sonic region given by
L Sy < e (15)

X3 5
\/14.-—-[14- \/1“-[1--—]
NV . S €1 €0

where vz = Vz/c The existence of a solution for (8) automatically

as-sﬁ_res the convergence of the continued fractions in (9), (10) and (1 1).

If the second harmonic modulating coefficient €5 is set equal to zero

then egs. (8),—(11) -and (14) reduce to the form given by Hessel and

Oliner [9]. In particular, when e, = 0, (15) reduces to the form
, , ’ 2=0,

1
——— S §

= = \——————E——
[14-2L 1 -1
| 0 €0

i

This condition is identical to the limits of the sonic region defined by

ngsédy and Oliner [1] for wave propagation in a sinusoidally modulated
dielec.tr'iyc medium. |

o Outsidé the sonic region deﬁned in Equation 15, the parametric
interactions can be divided into t\);IO types as follows: Tm:;e 1. Wheﬁ
the phase velocity of the pump wave is less than the phase veloéity of

the signal wave (v= V/co < 1), then the parametric interactions are of



the stable, non-inverting modulator type with the dispersion diagram
showing stop bands in the phase synchronous region. Stimulated
Brillouin scat}ferixig and optical diffraction by ultrasound come under

this ca‘,tggoryé | Figs. la and b show the Brillouin diagram (w vs. k)

for the coupling between n = -1 (difference frequency) and n = +1 (sum
frequency) space-time harmonics. Stokes and Antistokes interactions

of this type’agre of interest in non-lineat optics and in ultr'a’sonics which
was one of the main reasons for considering them in this report. The
parameters cihos.en in the calculations were 61/60 =0.5 v= V/c:0 = 0,25,
and ez/el = d, 0.1, and -0.1. The solutions were obtained with an IBM
7094 using a ;&'gp’idlyitera.tive secant technique for solving the trans~
cendental eq\j;ation. It can be seen from Fig. 1 that the stop band region
expands and &f;ontracts depending on the amplitude andl phase of the second
harmonic puﬂnp modulé.ting coefficient €,. In the absence of the second
pump harmotic the stop band region in terms of ko)\v extends from
1.974q to 2.0987. When the second harmonic is out ..Of phase with the
fundamental component of the pump wave (f = 7) and lez/ell =+0.1,

the width of the stop band increases and extends from 1. 9537 to 2. 1237.
'W’hen the second harmonic is in phase with the fundamental (yf = 0) and

l ez/ell = 0.1, the stop band width decreases to 1.9937 to 2. 0777.

- Within the stop band, the solutions to the dispersion relation re-
quire complé:?c_propagatiqn constants indicating contraflow directional
coupling resulting in frequency down conversion when the signal and
pump waves are travéling in the same direction. For each set of values
of €;, éz, and # the real part of the propagation constant ﬁL is constant

throughout the stop band while the imaginary component ag, varies in a
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semicircular manner. The complex propagation constant within the
stop band is also significantly affected by the second harmonic pump
wave. When €, = 0, the maximum value of the normalized complex pro-
pagation consta‘nt# within the stop band is givenvby 0. 5317 + jO. 067m;
with the second harmonic out of phase (§ = 7) and ]Ez/ell = +0.1,
the maximum value of the propagation constant in thé stop band increases
to 0. 5397 + jO. 0937 and reduces to 0. 5237 + jO. 0447 for the in-phase
condition (§ = 0, | ez/ell = +0.1). From these computations it appears
that the parametric coﬁpling between the n = +1 and n = ~1 space-time
harmonics ofé the signal wave is stronger when the second harmonic of
the pump wave is driven out of phase with the fundamental and decreases
when it is in phase with the fundamental component of the pump wave.
Type Zl{ . When the phase velocity of the pump wave is larger than
the phase ve]‘ocity of the signal wave in the unperturbed medium (v > 1),
the parametsic interactions are characterized by 'tempo_ral instabilities'
resulting in t;ﬁime growing oscillations. The nature of this oscillatory
growth process has been well described by Cassedy [2] The stop bands
in the Brillouin diagram are inverted, wherein solutions for the disper-
sion relation are obtained only for complex frequencies and real wave

numbers. The amplitude and phase of the second harmonic once again

has a strong/influence on both the width of the stop band in temporal
frequency (kp = w/c) and on the growth rate of the oscillations; however,
the effect of the phase relation of the second harmonic on the parametric
growth rate is opposite to that observed in the Type‘ 1 interaction where
v<1l. Figs. 2a and b show the Brillouin diagram for the interaction

between the n = ~1 and n = +1 harmonics. When €, = 0, the inverted stop
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band extends from B; h_ = 4.6107 to 4. 7207. When ¢ = 0 (in phase)

and 'ez/ 61' = 0.1, the stop band expands in width and covers the range
Bth = 4. 6257 to 4. 7857. For fixed values of €1, €3, and g, the
temporal frequency within the stop band is constant but the growth rate
(imaginary bpar't of ko)»v) varies in an approximately semicircular manner.
The effect of the second harmonic pump wave on the growth rate is shown
in F1g 2b; when €, = 0, the maximum value of the complex koh,, in the
stop band is 2.2507 + j0.0427. When |e,/€, | = 40.1 and g = 0 (in phase
condition), the maximum value of kokv is 2.2327 + jO.097. The growth
rate of the instability, therefore, increases with the amplitude of the
second harmonic when it i’s in phase with the fundamental component of

the pump wave.
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